Titanium Flanges

We are renowned Manufacturers, Exporters and Supplier of a wide range of Titanium Flanges that are using high quality raw materials in mumbai, India. We are manufactured these flanges as per the national & international quality standards. We also offer the complete range of grades like Titanium GR I, GR -2, GR-3, GR-4, GR-5, GR-7 Flanges. These are widely appreciated for its quality, corrosion resistant, and fine finishing. These are available different dimentions, specification & thickness as per the clients requirements. These Titanium Fanges are used in military, glasses, oil & gas, medical equipment, petrochemical equipment, etc.

Specification :
Size:½” to 18″
Specification:ASTM A213, ASTM A269, ASTM A249
Standard:ANSI Flanges, ASME Flanges, BS Flanges, DIN Flanges, EN Flanges, etc.
Class:150#, 300#, 600#, 900#, 1500#, 2500#. PN6, PN10, PN16, PN25, PN40, PN64 etc.
Dimensions:ANSI/ASME B16.5, B16.48, BS4504, BS 10, EN-1092, DIN, etc.
Grades:Titanium Gr-1, Titanium Gr-2, Titanium Gr-5, Titanium Gr-7.
 
STANDARDWERKSTOFF NR.UNS
Titanium3.7035 / 3.7165 / 3.7235R50400 / R56400 / R52400
Types Of Titanium Flanges :
•   Forged Flanges
•   Slip-on Raised Face Flanges (SORF)
•   Blind Raised Face Flanges (BLRF)
•   Weld Neck Raised Face Flanges (WNRF)
•   Socket Weld Raised Face Flanges (SWRF)
•   Screwed/Threaded Flanges
•   Orifice Flanges
•   Spectacle Blind Flanges
•   Reducing Flanges
•   Ring Type Joint Flanges
•   Tongue & Groove Flanges
•   Plate Flanges
•   Flat Face Flanges
•   ANSI / ASME / ASA B16.5 Flanges
•   EN 1092-1 Flanges
•   DIN Flanges
•   BS 10 Flanges
•   BS 4504 Flanges
•   JIS STD Flanges
 

Quality

Our main goal is to achieve our customers satisfaction and to do so we aim to the continuous improvement of the quality of our products. To this purpose we have implemented a quality system in accordance with ISO 9001 standard certified by LLOYD’S REGISTER. We can supply products manufactured according to PED 97/237EC directive, to AD 2000-MERKBLATT W0 and to NORSOK M-650 standards.
Concerning the welding process we have implemented a quality system in conformity with UNI EN ISO 3834-2 and certified by TÃœV.
Our whole range of products are manufactured in conformity with the most common standards and international directive (ASTM, ASME, DIN, AFNOR, PED) and can be supplied inspected by official bodies like ISPESL, RINA, LLOYD’S REGISTER, NORSKE VERITAS, BUREAU VERITAS, TÃœV (certificate EN 10204/3.2). As for as dimensions and tolerances of the products are concerned they can be in accordance with ANSI, ISO and DIN standards or according to a specific request of the customer.

WELDINGS
Weldings are carried out by qualified staff, according to UNI EN ISO 3834-2 under the supervision of the welding expert (I.W.T.) qualified by I.I.S. (Italian Institute of welding). The welding procedures used in Orsi (automatic and manual) are qualified according to the most known international standards (ASME IX and EN) and witnessed by TÃœV, LLRR, Bureau Veritas etc.

INSPECTIONS
We have our own testing and inspection department with qualified staff according to SNT-TC1 A and UNI EN 473 for the following non destructive tests:
visual and dimensional control:
radiographic inspection
dye penetrant inspection
ultrasonic test
ferrite check
hardness test
roughness test
hydrostatic test
P.M.I.

The destructive tests as well as the mechanical tests, metallographic tests and corrosion tests are made by specially qualified laboratories accredited SINAL in conformity with the UNI CEI EN ISO/IEC 17025:2005 standards requirements and they work according to international standards like ASME, ASTM, DIN, AFNOR and according to our customers specifications.

Characteristics Mechanical

MATERIALS
MECHANICAL CHARACTERISTICS
Grade
UNS
W.N.
ASTM PLATES
P.S. Density kg/dm3
Tensile strenght min N/mm2
Yeld point min N/mm2
Elongation 2″ min %
Hardness max HB
Hardness max HRB
321
S32100
1.4541
A240
8,0
515
205
40
207
95
321 H
S32109
1.4878
A240
8,0
515
205
40
207
95
347
S34700
1.455
A240
8,0
515
205
40
201
92
347 H
S34709
1.4878
A240
8,0
515
205
40
201
92
316
S31600
1.4401
A240
8,0
515
205
40
217
95
316 L
S31603
1.4404
A240
8,0
485
170
40
217
95
316 H
S31609
1.4878
A240
8,0
485
170
40
217
95
316 Ti
S31635
1.4571
A240
8,0
515
205
40
217
95
317 L
S31703
1.4438
A240
8,0
515
205
40
217
95
309 S
S30908
1.4828
A240
8,0
515
205
40
217
95
310 S
S31008
1.4845
A240
8,0
515
205
40
217
95
25.22.2
S31050
1.4466
A240
8,0
550
240
30
217
95
410 S
S41008
1.4
A240
7,7
415
205
22
183
89
253 MA
S30815
1.4893
A240
8,0
600
310
40
217
95
904 L
N08904
1.4539
B625
8,0
490
215
35
180
70-90
6 Mo
N08926
1.4529
B625
8,0
650
295
35
254 SMO
S31254
1.4547
A240
8,0
650
300
35
223
96
2304 Duplex
S32304
1.4362
A240
7,8
600
400
25
290
2205 Duplex
S31803
1.4462
A240
7,8
620
450
25
290
2507 Superduplex
S32750
1.441
A240
7,9
795
550
15
310
ALLOY 28
N08028
1.4563
B709
8,0
500
214
40
70÷90
ALLOY 31
N08031
1.4562
B625
8,1
650
276
40
220

Chemical Analysis

MAT.
CHEMICAL ANALYSIS
Den.
C % max
Mn % max
S % max
P % max
S % max
Cr
Ni
Mo
Fe
Cu
others elements
304 L
0,03
2,00
0,75
0,045
0,030
18÷20
8÷12
balance
304 H
0,04 – 0.010
2,00
0,75
0,045
0,030
18÷20
8÷10,5
321
0,08
2,00
0,75
0,045
0,030
17÷19
9÷12
balance
321 H
0,04 – 0.010
2,00
0,75
0,045
0,030
17÷19
9÷12
347
0,08
2,00
0,75
0,045
0,030
17÷19
9÷13
balance
347 H
0,04 – 0.010
2,00
0,75
0,045
0,030
17÷19
9÷13
316
0,08
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
316 L
0,03
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
316 H
0,04 – 0.010
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
316 Ti
0,08
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
317 L
0,03
2,00
0,75
0,045
0,030
18÷20
11÷15
4-Mar
balance
309 S
0,08
2,00
0,75
0,045
0,030
22÷24
12÷15
balance
310 S
0,08
2,00
1,50
0,045
0,030
24÷26
19÷22
balance
25.22.2
0,03
2,00
0,50
0,030
0,010
24÷26
21÷23
3-Feb
balance
410 S
0,08
1
1,00
0,040
0,030
11,5÷13,5
0,6
balance
253 MA
0,05-0,1
0,80
1,4-2
0,040
0,030
20÷22
10÷12
balance
904 L
0,02
2,00
1,00
0,045
0,035
19÷23
23÷28
5-Apr
balance
2-Jan
6 Mo
0,02
2,00
0,50
0,030
0,010
19÷21
24÷26
7-Jun
balance
0,5-1,5
254 SMO
0,02
1,00
0,80
0,030
0,010
19,5÷20,5
17,5÷18,5
6-6,5
balance
0,5-1
2304
0,03
2,50
1,00
0,040
0,030
21,5÷24,5
3÷5,5
0,05-0,6
balance
0,05-0,6
Duplex
2205
0,03
2,00
1,00
0,030
0,020
21÷23
4,5÷6,5
2,5-3,5
balance
Duplex
2507
0,03
1,20
0,80
0,035
0,020
24÷26
6÷8
5-Mar
balance
0,50max
Super
duplex
ALLOY 28
0,030
2,50
1,00
0,030
0,030
26÷28
29,5
3÷4
balance
0,6
÷32,5
÷1,4
ALLOY 31
0,015
2,00
0,30
0,020
0,010
26÷28
30÷32
6÷7
balance
1÷1,4

Characteristics Mechanical

MATERIALS
MECHANICAL CHARACTERISTICS
Grade
UNS
W.N.
ASTM Plates
P.S. Density kg/dm3
Tensile strenght min N/mm2
Yeld point min N/mm2
Elongation 2″ min %
Hardness max HB
Hardness max HRB
ALLOY 600
N06600
2.4816
B168
8,4
550
240
30
180
90
ALLOY 601
N06601
2.4851
B168
8,1
550
205
30
180
90
ALLOY 625
N06625
2.4856
B443
8,5
758
379
30
ALLOY 800H
N08810
1.4958
B409
8,0
450
170
30
ALLOY 800HT
N08811
1.4959
B409
8,0
450
170
30
ALLOY 825
N08825
2.4858
B424
8,1
586
241
30
165
87
ALLOY B2
N10665
2.4617
B333
9,2
760
350
40
226
100
ALLOY B3
N10675
2.46
B333
9,2
760
350
40
226
100
ALLOY B4
N10629
2.46
B333
9,2
760
350
40
100
ALLOY C22
N06022
2.4602
B575
8,7
690
310
45
100
ALLOY 59
N06059
2.4605
B575
8,8
710
350
45
100
ALLOY C276
N10276
2.4819
B575
8,9
690
283
40
226
100
ALLOY C4
N06455
2.461
B575
8,
690
276
40
226
100
ALLOY X
N06002
2.4665
B435
8,3
655
240
35
ALLOY G30
N06030
2.4603
B582
8,2
586
241
30
Cu Ni 90/10
C70600
2.0872
B171
8,9
275
105
30

Chemical Analysis

MAT.
CHEMICAL ANALYSIS
Den.
C % max
Mn %  max
Si % max
P % max
S %  max
Cr
Ni
Mo
Fe
Cu
Co
Al
others elements
NICKEL 200
0,15
0,35
0,35
0,010
98,4 ÷99,6
0,40 max
0,25 max
NICKEL 201
0,01
0,35
0,35
0,010
98,4 ÷ 99,6
0,40 max
0,25 max
ALLOY 400
0,30
2,00
0,50
0,024
63 min
2,50 max
28÷34
ALLOY 600
0,15
1,00
0,50
0,015
14÷17
72 min
6÷10
0,50 max
ALLOY 601
0,10
1,05
0,50
0,015
21÷25
58÷63
1,00 max
1÷1,7
ALLOY 625
0,10
0,50
0,50
0,015
0,015
20÷23
58min
8÷10
5,0 max
0,40 max
ALLOY 800H
0,05 ÷0,1
1,50
1,00
0,015
19÷23
30÷35
39,5 min
0,75 max
0,15 ÷0,6
ALLOY 800HT
0,06 ÷0,5
1,50
1,00
0,015
19÷23
30÷35
39,5 min
0,75 max
0,15 ÷0,6
ALLOY 825
0,05
1,00
0,50
0,030
19,5 ÷23,5
38÷46
2,5 ÷ 3,5
22 min
1,5÷3
0,2 max
ALLOY B2
0,02
1,00
0,10
0,040
0,030
1,00 max
balance
26÷30
2,00 max
1,00 max
ALLOY B3
0,01
3,00
0,10
0,030
0,010
1÷3
balance
27÷32
1÷3
0,2 max
3max
0,5 max
 
ALLOY B4
0,01
1,50
0,05
0,04
0,010
0,5÷1,5
balance
26÷30
1÷6
0,5
2,5
0,1÷0,5
ALLOY C22
0,015
0,50
0,08
0,020
0,020
20 ÷22,5
balance
12,5 ÷14,5
2÷6
ALLOY 59
0,010
0,50
0,10
0,015
0,005
22÷24
balance
16,5
1,5
0,3 max
0,1 ÷0,4
ALLOY C276
0,01
1,00
0,08
0,040
0,030
14,5 ÷16,5
balance
15÷17
4÷7
2,50 max
ALLOY C4
0,015
1,00
0,08
0,040
0,030
14÷18
balance
14÷17
3,00
2,0
ALLOY X
0,05 ÷0,15
1,00
1,00
0,040
0,030
20,5 ÷23
balance
8÷10
17÷20
0,5 ÷2,5
ALLOY G30
0,03
1,50
0,80
0,040
0,020
28 ÷31,5
balance
4÷6
13
1,0
5 max
÷17
÷2,4
Cu Ni 90/10
0,05
1,00
0,020
0,020
11
1÷1,8
balance

The Specification covers alloys UNS NO8904, UNS NO8925, UNS NO8031, UNS NO8932, UNS NO8926 and UNS R20033 plate, sheet and strip in the annealed temper.

CHEMICAL REQUIREMENTS

Element
Composition, % UNS N08904
Composition, % UNS N08925
Composition, % UNS N08932
Composition, % UNS N08031
Composition, % UNS N08926
Composition, % UNS R20033
Carbon, max
0.020
0.020
0.020
0.015
0.020
0.015
Manganese, max
2.00
1.00
2.00
2.0
2.00
2.0
Phosphorus, max
0.045
0.045
0.025
0.020
0.03
0.02
Sulphur, max
0.035
0.030
0.010
0.010
0.01
0.01
Silicon, max
1.00
0.50
0.40
0.3
0.5
0.50
Nickel
23.00 – 28.00
24.00 – 26.00
24.0 – 26.0
30.0 – 32.0
24.00 – 26.00
30.0 – 33.0
Chromium
19.00 – 23.00
19.00 – 21.00
24.0 – 26.0
26.0 – 28.0
19.00 – 21.00
31.0 – 35.0
Molybdenum
4.0 – 5.0
6.0 – 7.0
4.5 – 6.5
6.0 – 7.0
6.0 – 7.0
0.50 – 2.0
Copper
1.0 – 2.0
0.8 – 1.5
1.0 – 2.0
1.0 – 1.4
0.5 – 1.5
0.30 – 1.20
Nitrogen
0.10 – 0.20
0.15 – 0.25
0.15 – 0.25
0.15 – 0.25
0.35 – 0.60
Iron
balance
balance
balance
balance
balance
balance

PHYSICAL REQUIREMENTS

Alloy
Form
Tensile Strength, min, ksi (MPa)
Yield Strength (0.2% offset), min, psi (MPa)
Elongation in 2 in. or 50.8 min, or 4D, min, %
Rockwell Hardness (or equivalent)A
UNS N08904Sheet
71 (490)
31 000 (215)
35
70-90 HRB
 Strip
71 (490)
31 000 (215)
35
70-90 HRB
 Plate
71 (490)
31 000 (215)
35
70-90 HRB
UNS N08925Sheet
87 (600)
43 000 (295)
40
 Strip
87 (600)
43 000 (295)
40
 Plate
87 (600)
43 000 (295)
40
UNS N08932Plate
87 (600)
44 000 (305)
40
UNS N08031Sheet
94 (650)
40 000 (276)
40
 Strip
94 (650)
40 000 (276)
40
 Plate
94 (650)
40 000 (276)
40
UNS N08926Sheet
94 (650)
43 000 (295)
35
 Strip
94 (650)
43 000 (295)
35
 Plate
94 (650)
43 000 (295)
35
UNS R20033Sheet
109 (750)
55 000 (380)
40
 Strip
109 (750)
55 000 (380)
40
 Plate
109 (750)
55 000 (380)
40

A Hardness values are shown for information only and shall not constitute a basis for acceptance or rejection as long as the other mechanical properties are met.

Titanium and titanium alloys are attractive structural materials due to their high strength, low density, and excellent corrosion resistance. However, even though titanium is the fourth most abundant element in the Earth’s crust, the cost of titanium is high due to its high melting point and extreme reactivity. The high cost includes both the mill operations (extraction, ingot melting, and primary working) as well as many of the secondary operations conducted by the user. The advantages of titanium include:

  • The high strength-to-weight ratio of titanium alloys allows them to replace steel in many applications requiring high strength and fracture toughness. With a density of 4.5 g/cm3 (0.16 lb/in.3), titanium alloys are only about ½ as heavy as steel and nickel-base superalloys, yielding excellent strength-to-weight ratios.
  • Titanium alloys have much better fatigue strength than the other lightweight alloys, such as those of aluminum and magnesium.
  • Titanium alloys can operate at elevated temperatures, as high as 370 to 590 °C (700 to 1100 °F) depending on the specific alloy.
  • The corrosion resistance of titanium alloys is superior to both steel and aluminum alloys.

Properties

Titanium alloys are known for their combination of relatively low densities, high strengths, and excellent corrosion resistance. Yield strengths vary from 480 MPa (70 ksi) for some grades of commercial titanium to approximately 1100 MPa (160 ksi) for structural alloys. In addition to their static strength advantage, titanium alloys have much better fatigue strength than the other lightweight alloys, such as those of aluminum and magnesium. Titanium alloys can be used at moderately elevated temperatures, as high as 370 to 595 °C (700 to 1100 °F) depending on the specific alloy. In addition, some alpha-titanium alloys, especially the low interstitial grades, can also be used in cryogenic applications because they do not exhibit a ductile-to-brittle transition.

An important property of titanium alloys is corrosion resistance. When exposed to air, titanium immediately forms an oxide layer a few nanometers thick that protects the underlying metal from further oxidation. If this oxide layer is damaged, it re-forms in the presence of even trace amounts of oxygen or water. The oxide is strongly adherent and stable over a wide pH range of corrosive solutions as long as moisture and oxygen are present to maintain the protective oxide layer.

Thermal and Electrical Properties. 

Titanium and its alloys have very low thermal conductivities and high electrical resistivities.

Mechanical Properties.

Commercially pure grades of titanium have an ultimate tensile strength of approximately 410 MPa (60 ksi), equal to that of common low-alloy steels, but are 45% lighter. Although titanium is approximately 60% more dense than aluminum, it is about twice as strong as common aluminum structural alloys. Certain alloys can be heat treated to achieve tensile strengths as high as 1400 MPa (200 ksi).

Applications

As a result of their high strength-to-density, good corrosion resistance, resistance to fatigue and crack growth, and their ability to withstand moderately high temperatures without creep, titanium alloys are used extensively in aerospace for both airframe and engine components. In aircraft, titanium alloys are used for highly loaded structural components such as bulkheads and landing gears. In commercial passenger aircraft engines, the fan, the low-pressure compressor, and approximately ⅔ of the high-pressure compressor are made from titanium alloys. Other important applications include firewalls, exhaust ducts, hydraulic tubing, and armor plating. Due to its high cost, titanium alloys are more widely used in military aircraft than commercial aircraft. For example, titanium alloys comprise approximately 42% of the structural weight of the new F-22 fighter aircraft, while the Boeing 757 contains only 5% Ti.

The excellent corrosion resistance of titanium makes it a valuable metal in the chemical processing and petroleum industries. Typical applications include pipe, reaction vessels, heat exchangers (Fig. 4), filters, and valves. Titanium is used in the pulp and paper industries, where it is exposed to corrosive sodium hypochlorite or wet chlorine gases. Due to excellent resistance to saltwater, titanium is used for ship propeller shafts and service water systems. The former Soviet Union actually developed large, welded titanium-hulled submarines.

A growing use of titanium is in medical applications. Titanium is biocompatible with the human body (nontoxic and not rejected by the body). It is used for surgical implements and implants such as hip balls and sockets and heart valves. The lower elastic modulus of titanium more closely matches the properties of human bone than do stainless steel alloys, which results in less bone degradation over long periods of time. Titanium is also used for dental implants to replace missing teeth.

Titanium is used in many sporting goods, including golf club heads, tennis rackets, bicycle frames, skis, scuba gas cylinders, and lacrosse sticks. Approximately 95% of titanium ore is refined into titanium dioxide (TiO2) and used as white fade-resistant pigment in paints, paper, toothpaste, and plastics.

Grades of Titanium

  • Grade 1 Unalloyed titanium, low oxygen.
  • Grade 2 Unalloyed titanium, standard oxygen.
  • Grade 2H Unalloyed titanium (Grade 2 with 58 ksi minimum UTS).
  • Grade 3 Unalloyed titanium, medium oxygen.
  • Grades 1-4 are unalloyed and considered commercially pure or “CP”. Generally the tensile and yield strength goes up with grade number for these “pure” grades. The difference in their physical properties is primarily due to the quantity of interstitial elements. They are used for corrosion resistance applications where cost, ease of fabrication, and welding are important.
  • Grade 5, also known as Ti6Al4VTi-6Al-4V or Ti 6-4, is the most commonly used alloy. It has a chemical composition of 6% aluminium, 4% vanadium, 0.25% (maximum) iron, 0.2% (maximum) oxygen, and the remainder titanium. It is significantly stronger than commercially pure titanium while having the same stiffness and thermal properties (excluding thermal conductivity, which is about 60% lower in Grade 5 Ti than in CP Ti). Among its many advantages, it is heat treatable. This grade is an excellent combination of strength, corrosion resistance, weld and fabricability.
  • Generally, Ti-6Al-4V is used in applications up to 400 degrees Celsius. It has a density of roughly 4420 kg/m3, Young’s modulus of 110 GPa, and tensile strength of 1000 MPa. By comparison, annealed type 316 stainless steel has a density of 8000 kg/m3, modulus of 193 GPa, and tensile strength of only 570 MPa. And tempered 6061 aluminium alloy has 2700 kg/m3, 69 GPa, and 310 MPa, respectively.
  • Grade 6 contains 5% aluminium and 2.5% tin. It is also known as Ti-5Al-2.5Sn. This alloy is used in airframes and jet engines due to its good weldability, stability and strength at elevated temperatures.
  • Grade 7 contains 0.12 to 0.25% palladium. This grade is similar to Grade 2. The small quantity of palladium added gives it enhanced crevice corrosion resistance at low temperatures and high pH.
  • Grade 7H is identical to Grade 7 with enhanced corrosion resistance.
  • Grade 9 contains 3.0% aluminium and 2.5% vanadium. This grade is a compromise between the ease of welding and manufacturing of the “pure” grades and the high strength of Grade 5. It is commonly used in aircraft tubing for hydraulics and in athletic equipment.
  • Grade 11 contains 0.12 to 0.25% palladium. This grade has enhanced corrosion resistance.
  • Grade 12 contains 0.3% molybdenum and 0.8% nickel.
  • Grades 1314, and 15 all contain 0.5% nickel and 0.05%.
  • Grade 16 contains 0.04 to 0.08% palladium. This grade has enhanced corrosion resistance.
  • Grade 16H contains 0.04 to 0.08% palladium.
  • Grade 17 contains 0.04 to 0.08% palladium. This grade has enhanced corrosion resistance.
  • Grade 18 contains 3% aluminium, 2.5% vanadium and 0.04 to 0.08% palladium. This grade is identical to Grade 9 in terms of mechanical characteristics. The added palladium gives it increased corrosion resistance.
  • Grade 19 contains 3% aluminium, 8% vanadium, 6% chromium, 4% zirconium, and 4% molybdenum.
  • Grade 20 contains 3% aluminium, 8% vanadium, 6% chromium, 4% zirconium, 4% molybdenum and 0.04% to 0.08% palladium.
  • Grade 21 contains 15% molybdenum, 3% aluminium, 2.7% niobium, and 0.25% silicon.
  • Grade 23 contains 6% aluminium, 4% vanadium, 0.13% (maximum) Oxygen. Improved ductility and fracture toughness with some reduction in strength.
  • Grade 24 contains 6% aluminium, 4% vanadium and 0.04% to 0.08% palladium.
  • Grade 25 contains 6% aluminium, 4% vanadium and 0.3% to 0.8% nickel and 0.04% to 0.08% palladium.
  • Grades 2626H, and 27 all contain 0.08 to 0.14% ruthenium.
  • Grade 28 contains 3% aluminium, 2.5% vanadium and 0.08 to 0.14% ruthenium.
  • Grade 29 contains 6% aluminium, 4% vanadium and 0.08 to 0.14% ruthenium.
  • Grades 30 and 31 contain 0.3% cobalt and 0.05% palladium.
  • Grade 32 contains 5% aluminium, 1% tin, 1% zirconium, 1% vanadium, and 0.8% molybdenum.
  • Grades 33 and 34 contain 0.4% nickel, 0.015% palladium, 0.025% ruthenium, and 0.15% chromium .
  • Grade 35 contains 4.5% aluminium, 2% molybdenum, 1.6% vanadium, 0.5% iron, and 0.3% silicon.
  • Grade 36 contains 45% niobium.
  • Grade 37 contains 1.5% aluminium.
  • Grade 38 contains 4% aluminium, 2.5% vanadium, and 1.5% iron. This grade was developed in the 1990s for use as an armor plating. The iron reduces the amount of Vanadium needed as a beta stabilizer. Its mechanical properties are very similar to Grade 5, but has good cold workability similar to grade 9.
error: Content is protected !!