Titanium Other Products

On request we can provide our customer with radiant pipes, squares and rectangular pipes, bended pipes, pipe coils, half pipes, angle and channel bars, sheared flat bars, plasma cutted plates, discs, rings, flanges, manifold lined shafts, cylinders, rollers, special fittings threaded and s.w. fittings. We specialize in square and rectangular tube in monel, Inconel, duplex, super duplex, hastelloy and stainless steel grades. We have an advantage over other companies for coil tubing in monel, nickel alloy, Inconel, duplex, hastelloy and super duplex grades due to our wide stock range in seamless tubing for titanium, monel, Inconel, hastelloy, duplex and super duplex grades.

FERRALIUM 255 A790 A815 S32550
NICKEL200 B161 B366/WPN N02200 2.4066 B160 B564 N02200
NICKEL201 B161 B366/WPNL N02201 2.4068 B160 B564 N02201
MONEL 400 B165 B366/WPNC N04400 2.4360 B164 N04400 B564 N04400 A494 M35-1
MONEL K500 N05500 2.4375 B865 N05500
INCOLOY 800 B163 B366-WPNIC N08800 1.4876 X10NiCrAITi3320 B408 N08800 B564 N08800
INCOLOY 800H B407 B366/WPNIC10 N08810 1.4958 B408 N08810 B564 N08810
INCOLOY 800HT B366-WPNIC11 N08811 1.4959 B408 N08811 B564 N08811
INCOLOY 825 B423 B366/WPNICMC N08825 2.4858 NiFe30Cr21Mo3 B425 N08825 B564 N08825
INCONEL 600 B167 B366/WPNCI N06600 2.4816 B166 N06600 B564 N06600 A494 CY40
INCONEL 625 B444 B366/WPNCMC N06625 2.4856 NiCr22Mo9Nb B446 N06625 B564 N06625 A494 CW 6MC
INCONEL690 N06690 B166 N06690
INCONEL718 N07718 B637 N07718 B637
INCONEL X750 N07750 2.4669 B637 N07750 B637
HASTELLOY B2 B622 B366/WPHB-2 N10665 2.4617 B335 N10665 B564 N10665 A494 N 12MV
HASTELLOY B3 N10675 2.4600 B335 N10675 B564 N10675
HASTELLOY C N10002 A494 CW6M
HASTELLOY C22 B622 B366/WPHC22 N06022 2.4602 NiCr21Mo14W B574 N06022 B574 N06022 A494 CX2MW
HASTELLOY C276 B622 B366/WPHC276 N10276 2.4819 B574 N10276 B564 N10276
HASTELLOY C4 B622 B366/WPHC4 N06455 2.4610 B574 N06455 B574 N06455
HASTELLOY G B366-WPHG N06007 B581 N06007 B564
HASTELLOY G3 B366-WPHG3 N06985 B581 N06985 B564
HASTELLOY G30 B366-WPHG30 N06030 B581 N06030 B564
HASTELLOY X B366-WPHX N06002 B572 N06002 B564
TANTALUM R05200
TITANIUM GR.1 R50250 3.7025 B348 GR.1 B381 F1 B367 C1
TITANIUM GR.2 B337/B861 B363/WPT-2 R50400 3.7035 B348 GR.2 B381 F2 B367 C2
TITANIUM GR.3 R50400 3.7055 B348 GR.3 B381 F3 B367 C3
TITANIUM GR.5 B377/B861 R50400 3.7165 B348 GR.5 B381 F5 B367 C5
TITANIUM GR.7 B377/B861 B363/WPT-7 R52400 3.7235 B348 GR.7 B381 F7 B367 C7
ZIRCONIUM 702 B653-PZ(Gr) R60702 B550 B493
ZIRCONIUM 705 R60705
904L B677 A403/WP904L N08904 1.4432
1.4539 X1NiCrMoCu25205 B649 N08904 B625 N08904
ALU5083 B241 B361/WP5083 5083 3.3547 B473 B462 A351 CN7M
CARPENTER 20 B729 B366/WP20CB N08020 2.4660 B473 B462 A351 CN7M
DUPLEX 4462 A190 A815 S31803 1.4462 X2CrNiMoN2253 A276 or A479 S31803 A182 F51 A890 Gr 4A
SAF 2507 A790 A815 S32750 1.4469 G-X-25Cr7Ni4MoN A276/479 S32750 A182 F53 A890 Gr 6A A351 Gr CD4Mcu
ZERON 100 S32760 1.4501 A276/479 S32760 A182 F55 A351 Gr CD3MWCrN
CuAl10Ni5Fe4 C63000 C63200 2.0966 QAL10-4-4 B150 B124
CuAl10Ni C95800 2.0976 B148
CuAl11Ni C95500 2.0981 B148 B271
CuAl10Fe C61900 2.0936 QAL10-3-1
CuAl8Fe 2.0930 QAL9-4
CuAl9Mn C61000 2.0960 QAL9-2
Bronze C83600 B584 B62
Bronze C92200 B584 B61
Bronze C84400 B584
Brass C36000 B16
CARBON STEEL (C22) K30504 1.0402 C22 A105 A105 A216 WCB
CARBON STEEL (C22.8) 1.046 A105N A105N
LOW TEMP CARBON STEEL K03011 1.0508 TT St E 36 A350 LF2 A350 LF2 A352 LCB
HIGH YIELD STEEL K03014 A694 F60 A694 F60
3 1/2 NICKEL STEEL K32025 1.5639 A350 LF3 A350 LF3 A352 LC3
5 CHROME, 1/2 MOLY K41545 1.7362 12CrMo19.5 A182 F5 A182 F5 A217 C5
1 1/4 CHROME, 1/2 MOLY K11572 K11597 1.7733 1.7335 24CrMoV-55 13 CrMo 44 A739 B11 A182 F11 A217 WC6
2 1/4 CHROME, 1/2 MOLY K21590 1.738 10CrMo9.10 A739 B22 A182 F22 A217 WC9
9 CHROME, 1 MOLY K90941 1.7386 A182 F9 A182 F9 A217 CW6
X 12 CHROME, 091 MOLY K91560 1.4903 A182 F91 A217 C12
13 CHROME S41000 A276 or A479 410 A182 F6A A351 CA15
17-4PH S17400 1.4542 A564 630 A564 630
254 SMo A312 A403/WPS31254 S31254 1.4547 A182 F44 A182 F44 A351 CK3MCuN
304 A312 A403/WP304 S30400 1.4301 X5CrNi1810/X5CrNi189 A276 or A479 304 A182 F304 A351 CF8
304H S30409 1.4948 X6CrNi1811
304L S30403 1.4306 X2CrNi1911 A276 or A479 304L A182 F304L A351 CF3
309 A312 A403/WP309 S30900 1.4828 X15CrNiSi2012 A276 or A479 309 A182 F309
310 S31008 14,845 A479 310 A351 CK20
310S A312 A403/WP310S S31008 1.4845 X12CrNi2521 A276 or A479 310S A182 F310S A351 CK20
310/314 A312 A403/WP310 S31000 1.4841 X15CrNiSi2520 A276 or A479 310 A182 F310
316 A312 A403/WP316 S31600 1.4401 1.4436 X5CrNiMo17122 X5CrNiMo17133 X5 CrNiMo1810 A276 or A479 316 A182 F316 A351 CF8M
316H S31609 1.4919 X8CrNiMo1712
316L A312 A403/WP316L S31603 1.4404 X2CrNiMo17132 A276 or A479 316L A182 F316L A351 CF3M
316Ti A312 A403/WP316Ti S31635 1.4571 X6CrNiMoTi17122 A276 or A479 316Ti A182 F316Ti
317 A312 A403/WP317 S31700 1.4449 X5CrNiMo1713 A276 or A479 317 A182 F317L
317L A312 A403/WP317L S31703 1.4438 X2CrNiMoN18164 A276 or A479 317L A182 F317L A351CG8M
321 A312 A403/WP321 S32100 1.4541 X6CrNi1810 A276 or A479 321 A182 F321 A351CG8M
347 A312 A403/WP347 S34700 1.455 X6CrNiNb1810 X10
C

Quality

Our main goal is to achieve our customers satisfaction and to do so we aim to the continuous improvement of the quality of our products. To this purpose we have implemented a quality system in accordance with ISO 9001 standard certified by LLOYD’S REGISTER. We can supply products manufactured according to PED 97/237EC directive, to AD 2000-MERKBLATT W0 and to NORSOK M-650 standards.
Concerning the welding process we have implemented a quality system in conformity with UNI EN ISO 3834-2 and certified by TÃœV.
Our whole range of products are manufactured in conformity with the most common standards and international directive (ASTM, ASME, DIN, AFNOR, PED) and can be supplied inspected by official bodies like ISPESL, RINA, LLOYD’S REGISTER, NORSKE VERITAS, BUREAU VERITAS, TÃœV (certificate EN 10204/3.2). As for as dimensions and tolerances of the products are concerned they can be in accordance with ANSI, ISO and DIN standards or according to a specific request of the customer.

WELDINGS
Weldings are carried out by qualified staff, according to UNI EN ISO 3834-2 under the supervision of the welding expert (I.W.T.) qualified by I.I.S. (Italian Institute of welding). The welding procedures used in Orsi (automatic and manual) are qualified according to the most known international standards (ASME IX and EN) and witnessed by TÃœV, LLRR, Bureau Veritas etc.

INSPECTIONS
We have our own testing and inspection department with qualified staff according to SNT-TC1 A and UNI EN 473 for the following non destructive tests:
visual and dimensional control:
radiographic inspection
dye penetrant inspection
ultrasonic test
ferrite check
hardness test
roughness test
hydrostatic test
P.M.I.

The destructive tests as well as the mechanical tests, metallographic tests and corrosion tests are made by specially qualified laboratories accredited SINAL in conformity with the UNI CEI EN ISO/IEC 17025:2005 standards requirements and they work according to international standards like ASME, ASTM, DIN, AFNOR and according to our customers specifications.

Characteristics Mechanical

MATERIALS
MECHANICAL CHARACTERISTICS
Grade
UNS
W.N.
ASTM PLATES
P.S. Density kg/dm3
Tensile strenght min N/mm2
Yeld point min N/mm2
Elongation 2″ min %
Hardness max HB
Hardness max HRB
321
S32100
1.4541
A240
8,0
515
205
40
207
95
321 H
S32109
1.4878
A240
8,0
515
205
40
207
95
347
S34700
1.455
A240
8,0
515
205
40
201
92
347 H
S34709
1.4878
A240
8,0
515
205
40
201
92
316
S31600
1.4401
A240
8,0
515
205
40
217
95
316 L
S31603
1.4404
A240
8,0
485
170
40
217
95
316 H
S31609
1.4878
A240
8,0
485
170
40
217
95
316 Ti
S31635
1.4571
A240
8,0
515
205
40
217
95
317 L
S31703
1.4438
A240
8,0
515
205
40
217
95
309 S
S30908
1.4828
A240
8,0
515
205
40
217
95
310 S
S31008
1.4845
A240
8,0
515
205
40
217
95
25.22.2
S31050
1.4466
A240
8,0
550
240
30
217
95
410 S
S41008
1.4
A240
7,7
415
205
22
183
89
253 MA
S30815
1.4893
A240
8,0
600
310
40
217
95
904 L
N08904
1.4539
B625
8,0
490
215
35
180
70-90
6 Mo
N08926
1.4529
B625
8,0
650
295
35
254 SMO
S31254
1.4547
A240
8,0
650
300
35
223
96
2304 Duplex
S32304
1.4362
A240
7,8
600
400
25
290
2205 Duplex
S31803
1.4462
A240
7,8
620
450
25
290
2507 Superduplex
S32750
1.441
A240
7,9
795
550
15
310
ALLOY 28
N08028
1.4563
B709
8,0
500
214
40
70÷90
ALLOY 31
N08031
1.4562
B625
8,1
650
276
40
220

Chemical Analysis

MAT.
CHEMICAL ANALYSIS
Den.
C % max
Mn % max
S % max
P % max
S % max
Cr
Ni
Mo
Fe
Cu
others elements
304 L
0,03
2,00
0,75
0,045
0,030
18÷20
8÷12
balance
304 H
0,04 – 0.010
2,00
0,75
0,045
0,030
18÷20
8÷10,5
321
0,08
2,00
0,75
0,045
0,030
17÷19
9÷12
balance
321 H
0,04 – 0.010
2,00
0,75
0,045
0,030
17÷19
9÷12
347
0,08
2,00
0,75
0,045
0,030
17÷19
9÷13
balance
347 H
0,04 – 0.010
2,00
0,75
0,045
0,030
17÷19
9÷13
316
0,08
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
316 L
0,03
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
316 H
0,04 – 0.010
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
316 Ti
0,08
2,00
0,75
0,045
0,030
16÷18
10÷14
3-Feb
balance
317 L
0,03
2,00
0,75
0,045
0,030
18÷20
11÷15
4-Mar
balance
309 S
0,08
2,00
0,75
0,045
0,030
22÷24
12÷15
balance
310 S
0,08
2,00
1,50
0,045
0,030
24÷26
19÷22
balance
25.22.2
0,03
2,00
0,50
0,030
0,010
24÷26
21÷23
3-Feb
balance
410 S
0,08
1
1,00
0,040
0,030
11,5÷13,5
0,6
balance
253 MA
0,05-0,1
0,80
1,4-2
0,040
0,030
20÷22
10÷12
balance
904 L
0,02
2,00
1,00
0,045
0,035
19÷23
23÷28
5-Apr
balance
2-Jan
6 Mo
0,02
2,00
0,50
0,030
0,010
19÷21
24÷26
7-Jun
balance
0,5-1,5
254 SMO
0,02
1,00
0,80
0,030
0,010
19,5÷20,5
17,5÷18,5
6-6,5
balance
0,5-1
2304
0,03
2,50
1,00
0,040
0,030
21,5÷24,5
3÷5,5
0,05-0,6
balance
0,05-0,6
Duplex
2205
0,03
2,00
1,00
0,030
0,020
21÷23
4,5÷6,5
2,5-3,5
balance
Duplex
2507
0,03
1,20
0,80
0,035
0,020
24÷26
6÷8
5-Mar
balance
0,50max
Super
duplex
ALLOY 28
0,030
2,50
1,00
0,030
0,030
26÷28
29,5
3÷4
balance
0,6
÷32,5
÷1,4
ALLOY 31
0,015
2,00
0,30
0,020
0,010
26÷28
30÷32
6÷7
balance
1÷1,4

Characteristics Mechanical

MATERIALS
MECHANICAL CHARACTERISTICS
Grade
UNS
W.N.
ASTM Plates
P.S. Density kg/dm3
Tensile strenght min N/mm2
Yeld point min N/mm2
Elongation 2″ min %
Hardness max HB
Hardness max HRB
ALLOY 600
N06600
2.4816
B168
8,4
550
240
30
180
90
ALLOY 601
N06601
2.4851
B168
8,1
550
205
30
180
90
ALLOY 625
N06625
2.4856
B443
8,5
758
379
30
ALLOY 800H
N08810
1.4958
B409
8,0
450
170
30
ALLOY 800HT
N08811
1.4959
B409
8,0
450
170
30
ALLOY 825
N08825
2.4858
B424
8,1
586
241
30
165
87
ALLOY B2
N10665
2.4617
B333
9,2
760
350
40
226
100
ALLOY B3
N10675
2.46
B333
9,2
760
350
40
226
100
ALLOY B4
N10629
2.46
B333
9,2
760
350
40
100
ALLOY C22
N06022
2.4602
B575
8,7
690
310
45
100
ALLOY 59
N06059
2.4605
B575
8,8
710
350
45
100
ALLOY C276
N10276
2.4819
B575
8,9
690
283
40
226
100
ALLOY C4
N06455
2.461
B575
8,
690
276
40
226
100
ALLOY X
N06002
2.4665
B435
8,3
655
240
35
ALLOY G30
N06030
2.4603
B582
8,2
586
241
30
Cu Ni 90/10
C70600
2.0872
B171
8,9
275
105
30

Chemical Analysis

MAT.
CHEMICAL ANALYSIS
Den.
C % max
Mn %  max
Si % max
P % max
S %  max
Cr
Ni
Mo
Fe
Cu
Co
Al
others elements
NICKEL 200
0,15
0,35
0,35
0,010
98,4 ÷99,6
0,40 max
0,25 max
NICKEL 201
0,01
0,35
0,35
0,010
98,4 ÷ 99,6
0,40 max
0,25 max
ALLOY 400
0,30
2,00
0,50
0,024
63 min
2,50 max
28÷34
ALLOY 600
0,15
1,00
0,50
0,015
14÷17
72 min
6÷10
0,50 max
ALLOY 601
0,10
1,05
0,50
0,015
21÷25
58÷63
1,00 max
1÷1,7
ALLOY 625
0,10
0,50
0,50
0,015
0,015
20÷23
58min
8÷10
5,0 max
0,40 max
ALLOY 800H
0,05 ÷0,1
1,50
1,00
0,015
19÷23
30÷35
39,5 min
0,75 max
0,15 ÷0,6
ALLOY 800HT
0,06 ÷0,5
1,50
1,00
0,015
19÷23
30÷35
39,5 min
0,75 max
0,15 ÷0,6
ALLOY 825
0,05
1,00
0,50
0,030
19,5 ÷23,5
38÷46
2,5 ÷ 3,5
22 min
1,5÷3
0,2 max
ALLOY B2
0,02
1,00
0,10
0,040
0,030
1,00 max
balance
26÷30
2,00 max
1,00 max
ALLOY B3
0,01
3,00
0,10
0,030
0,010
1÷3
balance
27÷32
1÷3
0,2 max
3max
0,5 max
 
ALLOY B4
0,01
1,50
0,05
0,04
0,010
0,5÷1,5
balance
26÷30
1÷6
0,5
2,5
0,1÷0,5
ALLOY C22
0,015
0,50
0,08
0,020
0,020
20 ÷22,5
balance
12,5 ÷14,5
2÷6
ALLOY 59
0,010
0,50
0,10
0,015
0,005
22÷24
balance
16,5
1,5
0,3 max
0,1 ÷0,4
ALLOY C276
0,01
1,00
0,08
0,040
0,030
14,5 ÷16,5
balance
15÷17
4÷7
2,50 max
ALLOY C4
0,015
1,00
0,08
0,040
0,030
14÷18
balance
14÷17
3,00
2,0
ALLOY X
0,05 ÷0,15
1,00
1,00
0,040
0,030
20,5 ÷23
balance
8÷10
17÷20
0,5 ÷2,5
ALLOY G30
0,03
1,50
0,80
0,040
0,020
28 ÷31,5
balance
4÷6
13
1,0
5 max
÷17
÷2,4
Cu Ni 90/10
0,05
1,00
0,020
0,020
11
1÷1,8
balance

The Specification covers alloys UNS NO8904, UNS NO8925, UNS NO8031, UNS NO8932, UNS NO8926 and UNS R20033 plate, sheet and strip in the annealed temper.

CHEMICAL REQUIREMENTS

Element
Composition, % UNS N08904
Composition, % UNS N08925
Composition, % UNS N08932
Composition, % UNS N08031
Composition, % UNS N08926
Composition, % UNS R20033
Carbon, max
0.020
0.020
0.020
0.015
0.020
0.015
Manganese, max
2.00
1.00
2.00
2.0
2.00
2.0
Phosphorus, max
0.045
0.045
0.025
0.020
0.03
0.02
Sulphur, max
0.035
0.030
0.010
0.010
0.01
0.01
Silicon, max
1.00
0.50
0.40
0.3
0.5
0.50
Nickel
23.00 – 28.00
24.00 – 26.00
24.0 – 26.0
30.0 – 32.0
24.00 – 26.00
30.0 – 33.0
Chromium
19.00 – 23.00
19.00 – 21.00
24.0 – 26.0
26.0 – 28.0
19.00 – 21.00
31.0 – 35.0
Molybdenum
4.0 – 5.0
6.0 – 7.0
4.5 – 6.5
6.0 – 7.0
6.0 – 7.0
0.50 – 2.0
Copper
1.0 – 2.0
0.8 – 1.5
1.0 – 2.0
1.0 – 1.4
0.5 – 1.5
0.30 – 1.20
Nitrogen
0.10 – 0.20
0.15 – 0.25
0.15 – 0.25
0.15 – 0.25
0.35 – 0.60
Iron
balance
balance
balance
balance
balance
balance

PHYSICAL REQUIREMENTS

Alloy
Form
Tensile Strength, min, ksi (MPa)
Yield Strength (0.2% offset), min, psi (MPa)
Elongation in 2 in. or 50.8 min, or 4D, min, %
Rockwell Hardness (or equivalent)A
UNS N08904Sheet
71 (490)
31 000 (215)
35
70-90 HRB
 Strip
71 (490)
31 000 (215)
35
70-90 HRB
 Plate
71 (490)
31 000 (215)
35
70-90 HRB
UNS N08925Sheet
87 (600)
43 000 (295)
40
 Strip
87 (600)
43 000 (295)
40
 Plate
87 (600)
43 000 (295)
40
UNS N08932Plate
87 (600)
44 000 (305)
40
UNS N08031Sheet
94 (650)
40 000 (276)
40
 Strip
94 (650)
40 000 (276)
40
 Plate
94 (650)
40 000 (276)
40
UNS N08926Sheet
94 (650)
43 000 (295)
35
 Strip
94 (650)
43 000 (295)
35
 Plate
94 (650)
43 000 (295)
35
UNS R20033Sheet
109 (750)
55 000 (380)
40
 Strip
109 (750)
55 000 (380)
40
 Plate
109 (750)
55 000 (380)
40

A Hardness values are shown for information only and shall not constitute a basis for acceptance or rejection as long as the other mechanical properties are met.

Titanium and titanium alloys are attractive structural materials due to their high strength, low density, and excellent corrosion resistance. However, even though titanium is the fourth most abundant element in the Earth’s crust, the cost of titanium is high due to its high melting point and extreme reactivity. The high cost includes both the mill operations (extraction, ingot melting, and primary working) as well as many of the secondary operations conducted by the user. The advantages of titanium include:

  • The high strength-to-weight ratio of titanium alloys allows them to replace steel in many applications requiring high strength and fracture toughness. With a density of 4.5 g/cm3 (0.16 lb/in.3), titanium alloys are only about ½ as heavy as steel and nickel-base superalloys, yielding excellent strength-to-weight ratios.
  • Titanium alloys have much better fatigue strength than the other lightweight alloys, such as those of aluminum and magnesium.
  • Titanium alloys can operate at elevated temperatures, as high as 370 to 590 °C (700 to 1100 °F) depending on the specific alloy.
  • The corrosion resistance of titanium alloys is superior to both steel and aluminum alloys.

Properties

Titanium alloys are known for their combination of relatively low densities, high strengths, and excellent corrosion resistance. Yield strengths vary from 480 MPa (70 ksi) for some grades of commercial titanium to approximately 1100 MPa (160 ksi) for structural alloys. In addition to their static strength advantage, titanium alloys have much better fatigue strength than the other lightweight alloys, such as those of aluminum and magnesium. Titanium alloys can be used at moderately elevated temperatures, as high as 370 to 595 °C (700 to 1100 °F) depending on the specific alloy. In addition, some alpha-titanium alloys, especially the low interstitial grades, can also be used in cryogenic applications because they do not exhibit a ductile-to-brittle transition.

An important property of titanium alloys is corrosion resistance. When exposed to air, titanium immediately forms an oxide layer a few nanometers thick that protects the underlying metal from further oxidation. If this oxide layer is damaged, it re-forms in the presence of even trace amounts of oxygen or water. The oxide is strongly adherent and stable over a wide pH range of corrosive solutions as long as moisture and oxygen are present to maintain the protective oxide layer.

Thermal and Electrical Properties. 

Titanium and its alloys have very low thermal conductivities and high electrical resistivities.

Mechanical Properties.

Commercially pure grades of titanium have an ultimate tensile strength of approximately 410 MPa (60 ksi), equal to that of common low-alloy steels, but are 45% lighter. Although titanium is approximately 60% more dense than aluminum, it is about twice as strong as common aluminum structural alloys. Certain alloys can be heat treated to achieve tensile strengths as high as 1400 MPa (200 ksi).

Applications

As a result of their high strength-to-density, good corrosion resistance, resistance to fatigue and crack growth, and their ability to withstand moderately high temperatures without creep, titanium alloys are used extensively in aerospace for both airframe and engine components. In aircraft, titanium alloys are used for highly loaded structural components such as bulkheads and landing gears. In commercial passenger aircraft engines, the fan, the low-pressure compressor, and approximately ⅔ of the high-pressure compressor are made from titanium alloys. Other important applications include firewalls, exhaust ducts, hydraulic tubing, and armor plating. Due to its high cost, titanium alloys are more widely used in military aircraft than commercial aircraft. For example, titanium alloys comprise approximately 42% of the structural weight of the new F-22 fighter aircraft, while the Boeing 757 contains only 5% Ti.

The excellent corrosion resistance of titanium makes it a valuable metal in the chemical processing and petroleum industries. Typical applications include pipe, reaction vessels, heat exchangers (Fig. 4), filters, and valves. Titanium is used in the pulp and paper industries, where it is exposed to corrosive sodium hypochlorite or wet chlorine gases. Due to excellent resistance to saltwater, titanium is used for ship propeller shafts and service water systems. The former Soviet Union actually developed large, welded titanium-hulled submarines.

A growing use of titanium is in medical applications. Titanium is biocompatible with the human body (nontoxic and not rejected by the body). It is used for surgical implements and implants such as hip balls and sockets and heart valves. The lower elastic modulus of titanium more closely matches the properties of human bone than do stainless steel alloys, which results in less bone degradation over long periods of time. Titanium is also used for dental implants to replace missing teeth.

Titanium is used in many sporting goods, including golf club heads, tennis rackets, bicycle frames, skis, scuba gas cylinders, and lacrosse sticks. Approximately 95% of titanium ore is refined into titanium dioxide (TiO2) and used as white fade-resistant pigment in paints, paper, toothpaste, and plastics.

Grades of Titanium

  • Grade 1 Unalloyed titanium, low oxygen.
  • Grade 2 Unalloyed titanium, standard oxygen.
  • Grade 2H Unalloyed titanium (Grade 2 with 58 ksi minimum UTS).
  • Grade 3 Unalloyed titanium, medium oxygen.
  • Grades 1-4 are unalloyed and considered commercially pure or “CP”. Generally the tensile and yield strength goes up with grade number for these “pure” grades. The difference in their physical properties is primarily due to the quantity of interstitial elements. They are used for corrosion resistance applications where cost, ease of fabrication, and welding are important.
  • Grade 5, also known as Ti6Al4VTi-6Al-4V or Ti 6-4, is the most commonly used alloy. It has a chemical composition of 6% aluminium, 4% vanadium, 0.25% (maximum) iron, 0.2% (maximum) oxygen, and the remainder titanium. It is significantly stronger than commercially pure titanium while having the same stiffness and thermal properties (excluding thermal conductivity, which is about 60% lower in Grade 5 Ti than in CP Ti). Among its many advantages, it is heat treatable. This grade is an excellent combination of strength, corrosion resistance, weld and fabricability.
  • Generally, Ti-6Al-4V is used in applications up to 400 degrees Celsius. It has a density of roughly 4420 kg/m3, Young’s modulus of 110 GPa, and tensile strength of 1000 MPa. By comparison, annealed type 316 stainless steel has a density of 8000 kg/m3, modulus of 193 GPa, and tensile strength of only 570 MPa. And tempered 6061 aluminium alloy has 2700 kg/m3, 69 GPa, and 310 MPa, respectively.
  • Grade 6 contains 5% aluminium and 2.5% tin. It is also known as Ti-5Al-2.5Sn. This alloy is used in airframes and jet engines due to its good weldability, stability and strength at elevated temperatures.
  • Grade 7 contains 0.12 to 0.25% palladium. This grade is similar to Grade 2. The small quantity of palladium added gives it enhanced crevice corrosion resistance at low temperatures and high pH.
  • Grade 7H is identical to Grade 7 with enhanced corrosion resistance.
  • Grade 9 contains 3.0% aluminium and 2.5% vanadium. This grade is a compromise between the ease of welding and manufacturing of the “pure” grades and the high strength of Grade 5. It is commonly used in aircraft tubing for hydraulics and in athletic equipment.
  • Grade 11 contains 0.12 to 0.25% palladium. This grade has enhanced corrosion resistance.
  • Grade 12 contains 0.3% molybdenum and 0.8% nickel.
  • Grades 1314, and 15 all contain 0.5% nickel and 0.05%.
  • Grade 16 contains 0.04 to 0.08% palladium. This grade has enhanced corrosion resistance.
  • Grade 16H contains 0.04 to 0.08% palladium.
  • Grade 17 contains 0.04 to 0.08% palladium. This grade has enhanced corrosion resistance.
  • Grade 18 contains 3% aluminium, 2.5% vanadium and 0.04 to 0.08% palladium. This grade is identical to Grade 9 in terms of mechanical characteristics. The added palladium gives it increased corrosion resistance.
  • Grade 19 contains 3% aluminium, 8% vanadium, 6% chromium, 4% zirconium, and 4% molybdenum.
  • Grade 20 contains 3% aluminium, 8% vanadium, 6% chromium, 4% zirconium, 4% molybdenum and 0.04% to 0.08% palladium.
  • Grade 21 contains 15% molybdenum, 3% aluminium, 2.7% niobium, and 0.25% silicon.
  • Grade 23 contains 6% aluminium, 4% vanadium, 0.13% (maximum) Oxygen. Improved ductility and fracture toughness with some reduction in strength.
  • Grade 24 contains 6% aluminium, 4% vanadium and 0.04% to 0.08% palladium.
  • Grade 25 contains 6% aluminium, 4% vanadium and 0.3% to 0.8% nickel and 0.04% to 0.08% palladium.
  • Grades 2626H, and 27 all contain 0.08 to 0.14% ruthenium.
  • Grade 28 contains 3% aluminium, 2.5% vanadium and 0.08 to 0.14% ruthenium.
  • Grade 29 contains 6% aluminium, 4% vanadium and 0.08 to 0.14% ruthenium.
  • Grades 30 and 31 contain 0.3% cobalt and 0.05% palladium.
  • Grade 32 contains 5% aluminium, 1% tin, 1% zirconium, 1% vanadium, and 0.8% molybdenum.
  • Grades 33 and 34 contain 0.4% nickel, 0.015% palladium, 0.025% ruthenium, and 0.15% chromium .
  • Grade 35 contains 4.5% aluminium, 2% molybdenum, 1.6% vanadium, 0.5% iron, and 0.3% silicon.
  • Grade 36 contains 45% niobium.
  • Grade 37 contains 1.5% aluminium.
  • Grade 38 contains 4% aluminium, 2.5% vanadium, and 1.5% iron. This grade was developed in the 1990s for use as an armor plating. The iron reduces the amount of Vanadium needed as a beta stabilizer. Its mechanical properties are very similar to Grade 5, but has good cold workability similar to grade 9.
error: Content is protected !!